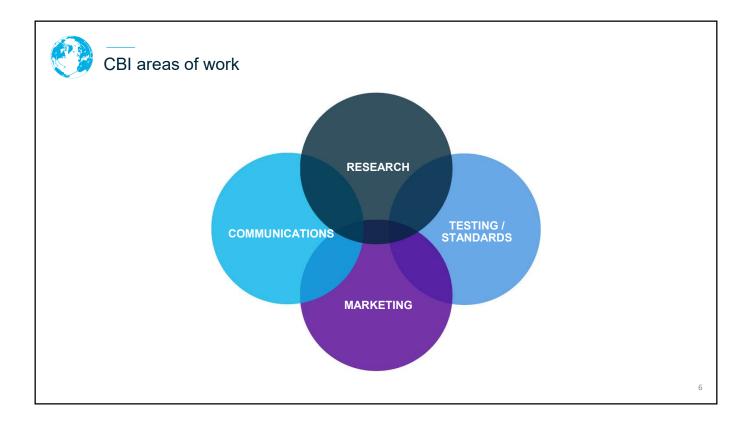


Lead and the Transition to Green Energy

ILZSG 19 October 2022


Presented by: Dr Alistair Davidson, Director, Consortium for Battery Innovation

CBI Members										
ABERTAX* TECHNOLOGIES	🛞 ACE Green Recycling	Addenda Corporation	ADITYA BIRLA GROUP	Advanced Battery Concepts Better Batterie, Better World*	AHLSTROM MUNKSJÖ	AMARA RAJA Inte Mar Antonio	IMERSIL	ArcActive	(apg	
Aurubis Metals for Progress	Batterien CHILE COMPANY	battery energy	BLACK DIAMOND	BOAB	BOLIDEN Metals for modern life	Borregaard LignoTech	TECHNOLOGIES	савот	Campine	
Carlos Graphow Technicague	CLARIOS	DO BATERY	DARAMIC	pigatron powerelectronics	THE PICE PICE COMPANY	Electric A Deplications Incorporated	∕ © EastP enn	EBL Echafelder Batterielader	ecobat	
EnerSys.		enviro Vales	EXIDE. TECHNOLOGIES	FOCUS		GLENCORE	GLOBAL LEAD Technologies	Gopher Resource		
GRIDTENTIAL	Hakurnas Leed Works Ltd.	HÂMMOND				Hollingsworth & Vose		finbatec <u>KUSTAN</u>	KCM 2005	
	💮 Korea Zinc	K <mark>ovohute</mark>	Lnrguard	lundin mining	METALLO	MICROPOROUS Husen Forther Frenk		MONBAT GROUP	m	
MOURA	MPI 🔅 reciklaža	Narada'	新聞 New Collations		OWENS	PENOX	FINITERA TECHTOLOGY INC.	Rolls.	SORFIN YOSHIMURA	
		SUPERIOR GRAPHITE	SUNLIGHT		Teck	terrapure	The Graphene Council	TROJAN	WILLANOVA UNIVERSITY	
S WAVETECH		Constructions Workfunder	TECHNOLOBY FOR BATTERIES							

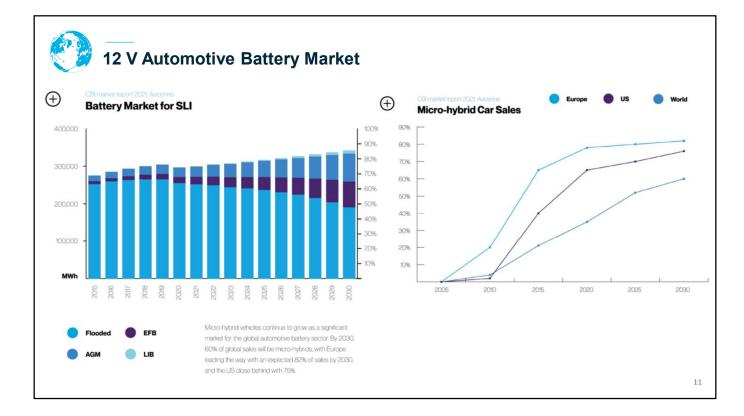
CBI Partners									
Mameren	Argonne	Battery	BRNO UNIVERSITY OF TECHNOLOGY	cea	CENELEC	CSIRO	EXAMPLE AND A DECEMBER OF A DE		
Energy Stonege Association	EUROBAT - F	Ford	Fraunhofer	Imperial College London		Note Parties of Beneficial States	^{金科力®} JINKELI		
	University	A Not-for-Profit University	MISSOURI SEC. Alternative Generative Generative Missourite Missourite Missourite Sec.	NorthStar	NUVATION ENERGY	Paragon Business Solutions, Inc.			
shoto` ≪ ^{双臉集团}	Refa	SWIN BUR • NE•	天能集团 TANNERS DECLE	UCLA					
Wrocław University of Science and Technology									

CBI's 2021 Technical Roadmap

BATTERY INNOVATION

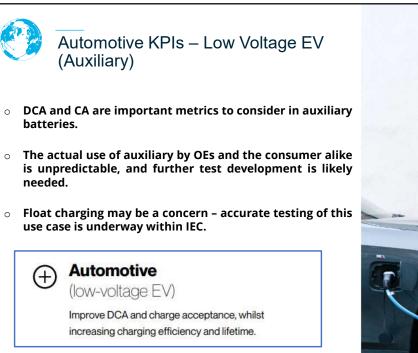
Demand for high-performing and sustainable batteries is driving research and development across the globe.

As global warming continues to have a dramatic impact on the world's climate, the imperative

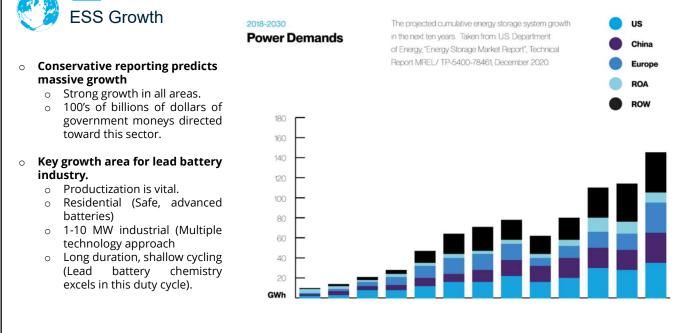

Battery energy storage is a key plan in the move to exclude the add according movador and performance improvements as the high set port Soung durand for tailary storadops access all packators histories density intervices of a goden as the tailances. From dain any storage to hybor and electric whybe densities during incasarch and electric whybe densities of any excession and advantatio batterios is during incasarch

Analysts product a speke in diamand for a range, of battery technologies, each of which display different strengths and as disigned to support a range of applications. Combining processing eacemb with the latest market neights, the Consolment for Battery Involation is leading the way by ensuring advanced lead

Building on the Technical Peachrap launched in 2019. the new and updated loadings reflects the performance improvements actived to date and sets out new goal designed to tap the unimited potential of advanced less battery technology. With continuation performance improvement and technological advances. The opportunities for the pickel lead battery technological to provide cost: detable and stationation y notative.

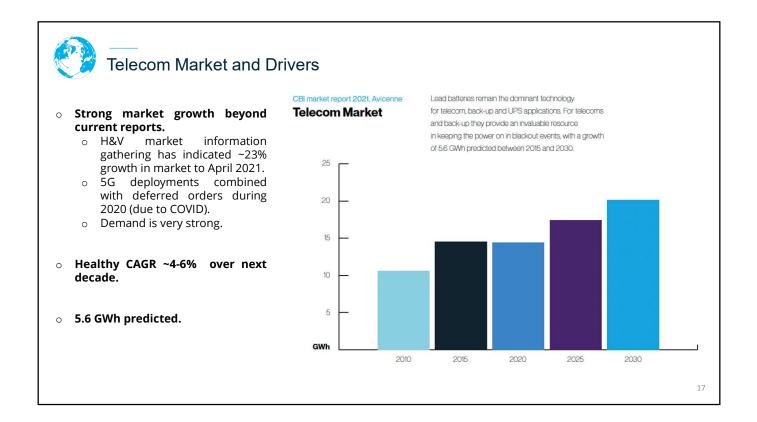

Economies need batteries and lots of them it is clear through riterative market-driven analysis that and users across the automotive energy strategy industrial and motive power sectors want gravitier performance from all battery technologies.

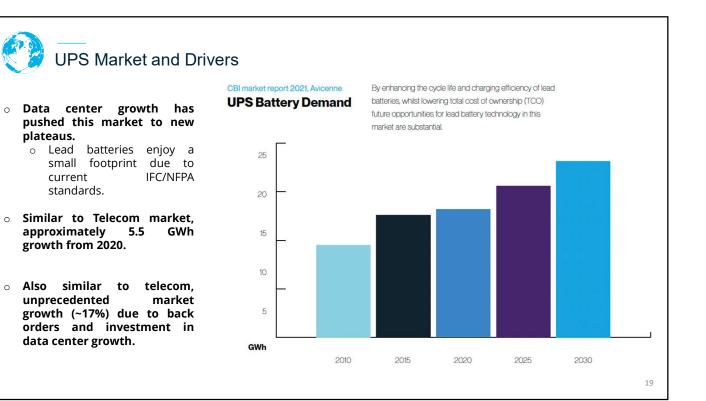
CBI 2021 Technical Roadmap + Industrial applications (start-stop/micro-hybrid) Improving cycle and calendar life, whilst reducing Ensure that recent improvements in Dynamic Charge battery costs. Acceptance (DCA) are maintained, whilst improving high-temperature performance and ensuring **Motive Power** (+)no trade-offs in key parameters such as Cold Crank Lowering TCO by increasing cycle life, recharge time, Amps (CCA) and water loss. and producing maintenance-free batteries. Other applications (+)(low-voltage EV) (including e-bikes) Improve DCA and charge acceptance, whilst Improving gravimetric energy density, recharge increasing charging efficiency and lifetime. capability and service life. + Energy Storage Systems Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating costs.



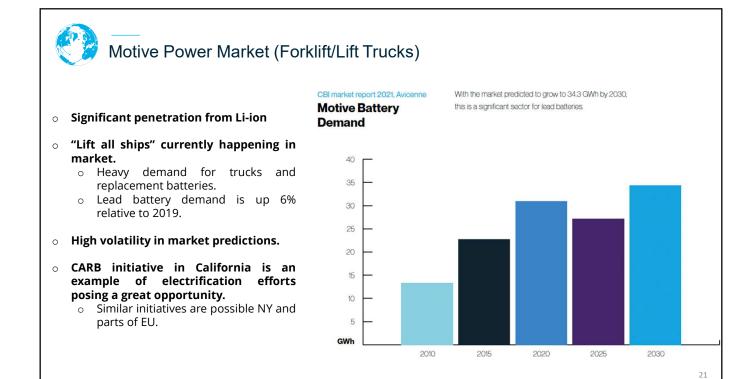
Automotive KPIs – ISS/Micro-hybrid

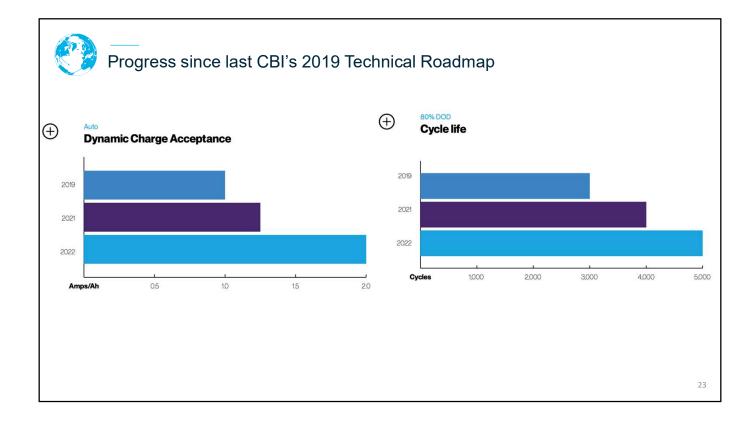
	Indicator (start-stop, micro/hybrid)	2021/2022	2025	2030
	DCA (EN 50342-6, A/Ah)*	125	2.0	2.0
	Ford Run-In Test B (A/Ah)	1.0	15	2.0
 (start-stop/micro-hybrid) Ensure that recent improvements in Dynamic Charge Acceptance (DCA) are maintained, whilst improving 	Durability: HTE (IEC/CENELEC draft)	16	20	20
high-temperature performance and ensuring no trade-offs in key parameters such as Cold Crank Amps (CCA) and water loss.	Water Loss – EN/HTE (g/Ah)	<3	<3	<3
	CCA, RC (comment)	Must not be compromised	Must not be compromised	Must not be compromised
	EN 50342-6:2015 (M1, M2, M3 classifie Maintain 15 weeks of SAE J2801	cation) should be used for (cycle life requirements	
	DCA testing from EN 50342 – 6 : 2015 t be too low. An adjustment of the EN DC/			20). DCRss discharge rate may



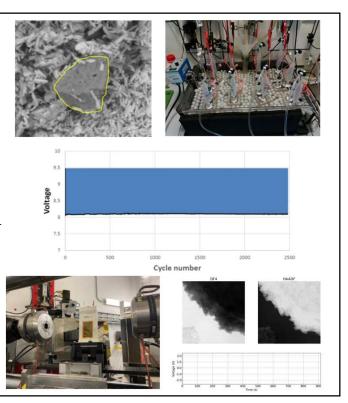


<u> </u>					
ESS Battery KPIs	Indicator	2021/2022	2025	2028	Stretch Target 2030
	Service life (years)	12-15	15-20	15-20	15-20
	Cycle life (80% DOD) as an estimate for C10 or higher rates	4000	4500	5000	6000
Energy Storage Systems Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating costs.	Operational cost for low charge rate applications (above C10) – Grid scale, long duration	0.12 \$/kWh/energy throughput	0.09 \$/kWh/energy throughput	0.06 \$/kWh/energy throughput	0.04 \$/kWh/energy throughput
	Operational cost for high charge rate applications (C10 or faster) - BTMS	0.25 \$/kWh/energy throughput	0.20 \$/kWh/energy throughput	0.15 \$/kWh/energy throughput	0.10 \$/kWh/energy throughput
	Energy Storage efficiency (Whin vs Whout)(%)	75-90	80-90	85-90	88-92
					15

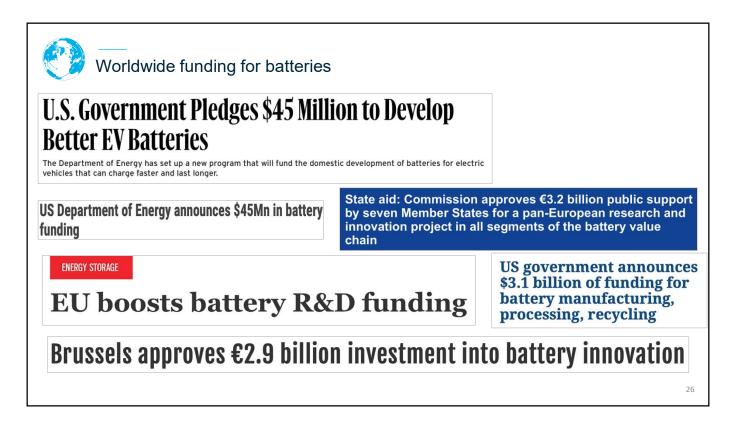

ESS Battery KPIs					
	Indicator	2021/2022	2025	2028	Stretch Target 2030
	Round Trip Efficiency (%)	85	88	90	92
Energy Storage Systems Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating	Acquisition Cost (cell level) (\$/kWh – 10 MW assumption)	175	140	100	75
enidency winist reducing acquisition and operating costs.	Energy Density (Wh/I)	80-100	110	120	140
	Acquisition cost, ESS level (\$/kWh)	350	325	300	275
	Safety	Maintain safety – deplo	by charging algorithms to o	control gassing	


	Lead Battery KPIs fo	Hesearch targets KPIs for lea				
		Indicator	2021/2022	2028		
\oplus	Industrial applications	Calendar Life on float	15 y at 20°C	7-10 y at 40°C 20 y at 20°C		
	Improving cycle and calendar life, whilst reducing battery costs.	Cycle life (Testing should follow IEC 60896-21/22)	300 at 80% DoD	500 at 80% DoD		
		Cost	\$175/kWh	\$150/kWn		
Maintain Safety and Recyclability, Maintain Shelf life						
				18		

Lead Battery KPIs for UPS Market								
	Indicator	2021/2022	2028					
	Calendar Life on float	10 y at 20°C	15 y at 20°C					
Industrial applications Improving cycle and calendar life, whilst reducing battery costs.	Peukert Capacity (15-minute vs. 10-hour capacity)	65-80%	85-90%					
	Cycle life Testing should follow IEC 60896-21/22	1000 at 50% DoD 6000 at 10% DoD	5000 at 50% DoD 12000 at 10% DoD					
	Cost	\$175/kWh	\$150/kWh					
	Maintain Safety and Recyclabili	ty, Maintain Shelf life	20					



	Motive Power Battery KPIs	 Hesearch targets KPIs for lead batteries in motive power applications 					
		Indicat	or	2021/2022	2025	2028	
		Service	əlifə	5	5-6	6-7	
	Motive Power	Energy	throughput	1200 equivalent cycles	1400 equivalent cycles	1600 equivalent cycles	
(\oplus)	Lowering TCO by increasing cycle life, recharge time,	Cycle li IEC 602		2400 (50% DOD)	2800 (50% DOD) 1750 (80% DOD)	3000 (50% DOD) 2000 (80% DOD)	
	and producing maintenance-free batteries.		density to charge efficiency)	35 Wh/kg	40 Wh/ kg °	42-45 Wh/kg °	
		Opport	time to 30 – 80% unity Charging Jependent on charger/charge	Less than 2 hrs	1 – 15 hrs	1 hr or less	
		Techno	kogy requirements	- Maintenance free present - Management of the battery * - Harmonization with Chargers * - Few products capable of opportunity charging	Maintenance free more common Management and monitoring of the battery * Harmonization with Chargers - Capable of opportunity charging	- Maintenance free typical. - Management and monitoring of the battery ^a - Harmonization with Chargers - Capable of opportunity charging 22	



- DCA up to 100% improvement
 - By optimization of additives (carbon/lignin)
 - Using carbons with functionalization that balances water loss and DCA
- Supporting research in member laboratories by defining and solving issues in testing and cell manufacturing
- Novel techniques for understanding battery fundamentals Neutron Diffraction and EIS
- Cycle life on target to deliver 5,000 cycles
 - New understanding on failure modes
 - Controlled overcharging reaching 100% increases in energy throughput in current commercially available products
 - Dynamic BMS methods governed by machine learning

